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We show that a multiple-hit noise reduction technique involving the acceptance of only a fraction of the
allowed atomistic deposition events could, by significantly suppressing the formation of high steps and deep
grooves, greatly facilitate the identification of the universality class of limited-mobility discrete solid-on-solid
conserved nonequilibrium models of epitaxial growth. In particular, the critical growth exponents of the
discrete one-dimensional molecular-beam-epitaxy growth model are definitively determined using the noise
reduction technique, and the universality class is established to be that of the nonlinear continuum fourth-order
conserved epitaxial growth equatidis1063-651X%98)51305-0

PACS numbg(s): 05.40:+j, 81.10.Aj, 81.15.Hi, 68.55:a

In 1991, Das Sarma and Tamborenea introdudddan  the scaling exponents, however, being approximately consis-
extremely simple one-dimensional 1+ 1) instantaneous tent with thelinear fourth-order conserved growth equation
relaxation limited-mobility conserved discrete solid-on-solid[13] rather than the expected nonlinear gméth the addi-
model of ideal molecular-beam-epitaxiélBE) growth un-  tional complication[7,8] of there being substantial skewness
der random vapor deposition nonequilibrium growth condi-in the growth morphology, implying thatlaear description
tions. In spite of the deceptively simple deposition andcannot apply. In addition, the model exhibits an intriguing
relaxation-incorporation rules controlling its growth dynam- anomalous multiscalinf6—12) behavior in the height corre-
ics, the universality class of this discrete growth model, pariation functions, which transcends the standard self-affine
ticularly in d=1+1 dimensions, has remained controversialdynamic scaling ansatz. In this paper we obtain the elusive
[2,3] and unresolved in spite of a substantial body of work*correct” asymptotic universality class of this one-
[4—11]. Our lack of understanding of the universality class ofdimensional[1] discrete growth model by introducing a
this one-dimensional growth moddl] is particularly myste- multiple-hit noise reduction scheme that has earlier been suc-
rious for the following three reasonél) recent large scale cessful[17,18 in the identification of the growth universality
simulations[12] of the corresponding two-dimensionadl ( classes for Eden and ballistic deposition models. Our noise
=241) growth model seem to fairly unambiguously indi- reduction results establish that the discrete limited-mobility
cate the 2-1-dimensional growth universality class to be growth model introduced in Refl] does indeed belong to
that of the fourth-order nonlinear conserved MBE growththe fourth-ordemonlinearconserved MBE growth equation.
equation[13]; (2) a number of theoretical approaches based Our growth mode[1] is shown in Fig. 1, where we also
on the kinetic master equation technidud—-16¢ as well as  show the dynamical growth morphologies for the original
symmetry argument®] lead to the conclusion that the one- model and the noise-reduced model. The noise reduction
dimensional model should belong to the fourth-order nonlin-scheme rescales time by the noise reduction fattGwhere
ear conserved MBE growth equatiof8) extensive large m is the number of attempts required at a site for an actual
scale simulationgusing up to 1&* deposited atoms in the deposition process to occum=1 in the original model of
largest simulationsin d=1+1 produce[4—-9] excellent Ref.[1]), and all our times are given in terms of this rescaled
scaling of the dynamically evolving surface roughness, withtime (which also defines the average film thickness in our
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FIG. 1. (a) Dynamical morphologies from the system of substrate size
L=1000 at 16, 1¢°, and 1§ monolayergML ) for the original model, i.e., 0.1 i
m=1. Inset: schematic configuration defining growth rules inlldimen- G N VR e e
sions;m hits are needed at a site for an actual deposition ewert 1 in 10 10 10 10 10 10 10
Ref. [1]). (b) Morphologies from them=10 model plotted on the exact (b) t
same scale as if®), showing the much smoother surfaces. The small insets
show the morphologies at 4@nd 16 ML in appropriately expanded scales FIG. 2. Interface widthwW(t) as a function of deposition time. Solid
so that the detailed rough morphology can be seen. lines indicate the power-law fit with the growth exponghfor systemL

=1000 with (8 m=1 and(b) m=10. Inset: plots of log\W; vs log.L,

. . . . whereW; is the saturation width. Slopes yield the roughness expoaent
mOdeb' The most Stl’lklng aspect of Flg. 1 is that noise re'Right-hand inset ifa): W(t) for WV model withm = 1, 5, and 15 from top

duction is seen to have a drastic effect on the growthg pottom. In the original modelni=1) 8~0.36, whereas in the noise-
morphology—it strongly reduces the high surface steps anekduced ( = 5, 15 resultsg~0.26.
deep grooves which were the hallmark of the origif]
limited-mobility growth model. This suppression of high defined asW(L,t)=((h—(h))“)*% with the angular brack-
steps (equivalently, the reduction of local slopem the  ets representing the average over the substrate of Wwiditn
growing surface is, in fact, the key to the success of the noisthe one-dimensional direction as well as a noise ensemble
reduction scheme in obtaining the asymptotically correct uniaverage. The dynamic scaling ansatshich is obeyed ex-
versality class of the growth model. We emphasize, howeveityemely well by our results for all values of the noise reduc-
that noise reduction, while drastically suppressing surfacéion factor m=1-15 we investigatgdasserts thaiV(L,t)
high steps/deep grooves, still produces a skewed growtht? for é<L andW(L,t—®)=Wy(L)~L® in the saturated
morphology where the up-down symmetry of the starting flatsteady state fo€>L, where the lateral correlation length
substrate is spontaneously broken by the nonequilibrium=£(t)~t*2. The growth(roughnessexponents) B(«) and
growth process—in fact, the measured skewness in ththe dynamical exponert=a/B (which describes the ap-
growth morphology is found to be independent of the noisgroach to the steady state associated with the growth of lat-
reduction scheme. The skewness |{0.5) in the growth eral correlationscompletely define the universality class of
morphology(even in its saturated steady spaie a unique the growth model, provided the growth problem is self-
characteristic of the nonequilibrium growth model of R&.  affine. In Fig. 2 we show our calculatat/(t) and Wg(L)
which is not shared by the other limited-mobility epitaxial dynamic scaling plots for various values of the noise reduc-
growth modelq 19,20 existing in the literature. tion factor. While all the results show excellent dynamic
To proceed further, we use the dynamical scaling ansatacaling, it is clear that the critical exponents for the noise-
and discuss the evolving surface kinetic roughness in termgeduced model ar8~0.33,a~1.0,z~ 3, whereas the origi-
of two independent critical exponengsanda. The interface  nal model m=1) gives3~0.37, a~1.4,z~3.9, in agree-
width or the root-mean-square fluctuation in the dynamicakment with earlier findingg1,4,7-11. We believe that the
surface heighh(x,t), whereh is the height of the growing critical exponentsg~0.33, a~1.0, z~3 are the correct
surface afreduced timet at the substrate spatial pointis  asymptotic exponents defining the universality class of the
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one-dimensional growth model originally introduced in Ref.
[1], and that the noise reduction scheme successfully sup-
presses the correction to scaling that dominatesntizel
version of the model for many decades in time.

The coarse-grained continuum equation which is believed
[7-11] to describe the growth model of Réfl] is the con-
served nonlinear MBE growth equati¢oh3]:
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where h=h(x,t) is now the height fluctuatiorh—(h)
around the average surface height, aj{d,t) is the (white)
shot noise associated with the deposition beam fluctuations
that produce the kinetic surface roughening. The critical ex-
ponents for the corresponding fourth-orderear equation
[1,20], where A\,=\,,=0, are trivially known to beg
=0.375,a¢=1.5,z=4. It was already noted in Refl] that

the simulated growth exponents of the discrete model seem
to be following those of the linear version of Ef) al-
though no particular significance was attached to this fact.
The intriguing aspect of the critical behavior of the discrete
model ind=1+1 dimensions has been its consistency with
the linear version of Eq.l) as far as theglobal exponents3
(=0.375),« (=1.5), andz (=4) go, whereas at the same
time the up-down symmetry of the growth problem, which is
manifestly present in the linear equation becatse —h
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FIG. 3. (&) Anomalous multiscaling behavior of the height correlation
functions G4(r,t) =(|h(x+r,t) —h(x,t)|H* at fixed t=10° ML and the

leaves the equation invariant, is broken with the evolvingnearestneighbor height difference correlation functi@Bg(1,t) =(|h(x
growth morphology, explicitly showing a finite skewness 10— h(x.)[%)™ (insed with g=1-4 from bottom o top. Substrate size

=(h®)(h?)~32=—0.5 (obviously s=0 for the linear equa-

the one-dimensional discrete growth model shoudd be-

L=1000 andm=1. (b) The same plots for the system with=10. The

. . noise-reduced correlation functions show only very weak anomalous multi-
tion). Thus the puzzle until our current work has been thakcajing behavior.

long to the fourth-order conserved linear growth equation We believe that the success of noise reduction in produc-

universality, except that it does for as long(as least up to

ing the correct asymptotic growth universality arises from

eight decades in timeone can dynamically simulate the the suppression of the infinite series of nonlinear teky, (
model[1-12. Our multiple-hit noise reduction scheme re- #0) in Eq. (1) which are associated with the high steps in
solves the mystery by obtaining the asymptotic exponents bshe original (n=1) discrete growth modgMl]. The role of
successfully eliminating the problem of severe correction tcthe infinite series of nonlinear term@.e., \,,#0 for n

scaling, which hinders then=1 version[1] of the model.

=3,4,...) in Eq.(2) is quite subtlg10,11] because the ex-

This is similar to what was earlier found in the Eden modelistence of such an infinite series mlevantterms is unusual

[17,18.

in critical phenomena. High steps, however, imply large val-

The critical exponents we obtain in the noise-reducedies of the slopeéh/dx, indicating the existence of the infinite
model (8=0.33,#=1.0,z=3) are consistent with the one- series. Simple power counting shows all the terms in this

loop dynamical RG13] treatment 3=1/3,«=1,z=3) and
direct numerical simulationig 1,21] of the fourth-order non-
linear conserved MBEgrowth equation13] with A,,=0,
but v,,\,#0 in Eq. (1). The original thinking[13], that

infinite series to benarginally relevant operators the one-
dimensional growth problem, and since they are all allowed
by the symmetry of the discrete model, they should all be
presen{7,11] in the growth model of Ref.1]. Note that the

these one-loop results may in fact be exact for the fourtheorresponding linear problem has (=1.5)>1, implying

order nonlinear equation, has recently been questi¢p2d
with a two-loop dynamical renormalization groURG) treat-

that the infinite nonlinear series should be generated if al-
lowed by symmetry. This infinite series has recently been

ment obtaining miniscul@ess than 0.5%) numerical correc- shown[10,11] to be responsible for giving rise to the anoma-
tions. These two-loop corrections are too small to be of anyous “intermittent” multiscaling behavior in the growth
practical significance in our workor to other simulations model of Ref[1], which has attracted considerable attention
and experimenjs We therefore conclude that the critical ex- [6—11]. In Fig. 3 we show that the noise reduction technique
ponents of the noise-reduced version of the growth modedssentially eliminates the anomalous multiscaling behavior

introduced in Ref[1] are the same as those of Ed) with

in the height correlation functions of the growth model of

Aon=0 for n=3, and therefore the model belongs to theRef. [1]. Thus the noise reduction technique resolves all
universality class of the nonlinear fourth-order conservedhree of the intriguing and puzzling features of the one-

MBE growth equation.

dimensional minimal MBE growth model of Ref1],
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namely, (1) it establishes beyond any reasonable doubt thenetry[9] in the growth model that produces an exactly van-
correct universality class of the model to be the “expected”ishing surface curren5] in the model on a tilted substrate.
fourth-order conserved nonlinear continuum growth equaThe surface current on a tilted substrate is, in general, pro-
tion; (2) it suppresses the “unphysical” feature of high stepsportional[9,25] to the strengthv, of the generic EW term in
and deep grooves in the growth morphology while maintainthe growth equation, and therefore its vanishing implies
ing a finite skewness in the morpholod®) it suppresses the  —q_our calculated inclination-dependent surface current on
anomalous multiscaling in the model. a tilted substrate in the growth model is essentially zero
Before concluding, we emphasize an important feature ofy;ihin error bars for all values of the noise reduction factor
our growth model characterized by whatabsentfrom Eg. (m = 1-15. This is also a strong indication that noise re-

(1)—the well-known [9,23,24 Laplacian v,(d%h)/(9x?) ducti : :
. . ; L uction does not change the universality class of our growth
term associated with the generic Edwards-Wilking&iwV) model. This is similar to what was found earligr7,18 in

“”iVGTS?‘“W class is strictly absent from the growth equation[he Eden model. It may be worthwhile to point out that in the
describing the discrete growth model of RElf]. The model Eden model als¢17,18 the success of noise reduction in

of Ref.[1] is, in fact, the only known limited-mobility MBE S . ) : .
; eliminating corrections to scaling arises from the suppression
growth modekhat does not belong to the generic EW growth of high steps.

universality classlt is worth emphasizing this point because . . . .
. ) X We conclude by discussing why understanding the uni-
this has been a controversial and contenti@3,9,2 issue versality class of the growth model introduced in Réf| is

in the p"’!St- . . . . of considerable interest. An important theoretical reason is
To reinforce this point we have also carried out noise

reduction simulations of the closely related Wolf-Villain that this model is theonly limited-mobility MBE. growth

) . model that does not belong to the generic EW universality
(WV). model[20], Wh".:h differs .from the model of .R?[.l.] class and therefore, as an exception, its proper theoretical
only in that all deposited atomg)dependent of their initial

coordinations are allowed to move to lateral nearest- understanding is of obvious interest. The fact that this
: ns & S ; e growth model exhibits complex and highly nontrivial anoma-
neighbor sites in order tmaximizetheir local coordination

o lous multiaffine dynamic scalingf—11] is an additional the-
nmuorQZF;sArﬁh?gggaﬁt Ige\ll\cl)i”-sigetﬂtgtg\/z\/ﬂu;?\?;r;gell\i Wc\I/ass oretical incentive in understanding its growth universality.
) ymp y 9 sality clas 'Another significant feature is that, by construction, this
this crossover has never been clearly observed in S|mulatlo%s

because for all practical purposes the dynamic scaling beha fowth model is the low-temperature versidn4] of the full
b purp y 9 emperature-dependent activated diffusion MBE growth

ior of the WV model[20] is similar to that of the model of ; o o
. . ) model[4,8] because in the limited-mobility model only the
Ref. [1] up to the longest simulation times. Odr=1+1 .adatoms without any lateral bonding are allowed to increase

E?'Szgdgg% V\%or\r/]votdheelltstqugu;as“?rrl]sfo?irtl:ovigvsti %T( 'giitn't"?heir coordination through diffusion and therefore it has con-
gd.ecre,a e f):)m~0 36 (for m—1y tg ~0 362 'npd siderable experimental significance. It may be appropriate in
B ses : =1) ' Bew | this context to point out that several experimental measure-

=1+1 (for m=15) under the noise reduction technique. - -
Thus the WV model belongs to the EW universality and thements[26] of MBE growth exponents=~0.2, a=0.7) are

; consistent with thed=2+1 dimensional critical exponents
model of Ref.[l] _belongs to the fourth-order nonlinear MBE given by the fourth-order nonlinear conserved growth equa-
growth universality.

; o tion which, as we show in this paper and in Rd2], defines
The noneX|s§ence of the_ EW tgrfwmch, if it existed, the universality class of the limited-mobility discrete growth
would have defined the universality class of the model be

cause all of the fourth-order terms in E@) areirrelevant model of Ref[1]
compared with the EW Laplacian tefnm the growth model This work was supported by the U.S. ONR and the NSF
of Ref.[1] is, in fact, an exact result due to a hidden sym-MRSEC.
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