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We show that a multiple-hit noise reduction technique involving the acceptance of only a fraction of the
allowed atomistic deposition events could, by significantly suppressing the formation of high steps and deep
grooves, greatly facilitate the identification of the universality class of limited-mobility discrete solid-on-solid
conserved nonequilibrium models of epitaxial growth. In particular, the critical growth exponents of the
discrete one-dimensional molecular-beam-epitaxy growth model are definitively determined using the noise
reduction technique, and the universality class is established to be that of the nonlinear continuum fourth-order
conserved epitaxial growth equation.@S1063-651X~98!51305-0#

PACS number~s!: 05.40.1j, 81.10.Aj, 81.15.Hi, 68.55.2a
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In 1991, Das Sarma and Tamborenea introduced@1# an
extremely simple one-dimensional (d5111) instantaneous
relaxation limited-mobility conserved discrete solid-on-so
model of ideal molecular-beam-epitaxial~MBE! growth un-
der random vapor deposition nonequilibrium growth con
tions. In spite of the deceptively simple deposition a
relaxation-incorporation rules controlling its growth dynam
ics, the universality class of this discrete growth model, p
ticularly in d5111 dimensions, has remained controvers
@2,3# and unresolved in spite of a substantial body of wo
@4–11#. Our lack of understanding of the universality class
this one-dimensional growth model@1# is particularly myste-
rious for the following three reasons:~1! recent large scale
simulations@12# of the corresponding two-dimensional (d
5211) growth model seem to fairly unambiguously ind
cate the 211-dimensional growth universality class to b
that of the fourth-order nonlinear conserved MBE grow
equation@13#; ~2! a number of theoretical approaches bas
on the kinetic master equation technique@14–16# as well as
symmetry arguments@9# lead to the conclusion that the on
dimensional model should belong to the fourth-order non
ear conserved MBE growth equation;~3! extensive large
scale simulations~using up to 1014 deposited atoms in the
largest simulations! in d5111 produce @4–9# excellent
scaling of the dynamically evolving surface roughness, w
571063-651X/98/57~5!/4863~4!/$15.00
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the scaling exponents, however, being approximately con
tent with thelinear fourth-order conserved growth equatio
@13# rather than the expected nonlinear one~with the addi-
tional complication@7,8# of there being substantial skewne
in the growth morphology, implying that alinear description
cannot apply!. In addition, the model exhibits an intriguin
anomalous multiscaling@6–12# behavior in the height corre
lation functions, which transcends the standard self-affi
dynamic scaling ansatz. In this paper we obtain the elus
‘‘correct’’ asymptotic universality class of this one
dimensional @1# discrete growth model by introducing
multiple-hit noise reduction scheme that has earlier been
cessful@17,18# in the identification of the growth universalit
classes for Eden and ballistic deposition models. Our no
reduction results establish that the discrete limited-mobi
growth model introduced in Ref.@1# does indeed belong to
the fourth-ordernonlinearconserved MBE growth equation

Our growth model@1# is shown in Fig. 1, where we als
show the dynamical growth morphologies for the origin
model and the noise-reduced model. The noise reduc
scheme rescales time by the noise reduction factorm ~where
m is the number of attempts required at a site for an ac
deposition process to occur—m51 in the original model of
Ref. @1#!, and all our times are given in terms of this rescal
time ~which also defines the average film thickness in o
R4863 © 1998 The American Physical Society
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model!. The most striking aspect of Fig. 1 is that noise
duction is seen to have a drastic effect on the grow
morphology—it strongly reduces the high surface steps
deep grooves which were the hallmark of the original@1#
limited-mobility growth model. This suppression of hig
steps ~equivalently, the reduction of local slopes! in the
growing surface is, in fact, the key to the success of the n
reduction scheme in obtaining the asymptotically correct u
versality class of the growth model. We emphasize, howe
that noise reduction, while drastically suppressing surf
high steps/deep grooves, still produces a skewed gro
morphology where the up-down symmetry of the starting
substrate is spontaneously broken by the nonequilibr
growth process—in fact, the measured skewness in
growth morphology is found to be independent of the no
reduction scheme. The skewness ('20.5) in the growth
morphology~even in its saturated steady state! is a unique
characteristic of the nonequilibrium growth model of Ref.@1#
which is not shared by the other limited-mobility epitaxi
growth models@19,20# existing in the literature.

To proceed further, we use the dynamical scaling ans
and discuss the evolving surface kinetic roughness in te
of two independent critical exponentsb anda. The interface
width or the root-mean-square fluctuation in the dynami
surface heighth(x,t), whereh is the height of the growing
surface at~reduced! time t at the substrate spatial pointx, is

FIG. 1. ~a! Dynamical morphologies from the system of substrate s
L51000 at 104, 105, and 106 monolayers~ML ! for the original model, i.e.,
m51. Inset: schematic configuration defining growth rules in 111 dimen-
sions;m hits are needed at a site for an actual deposition event (m51 in
Ref. @1#!. ~b! Morphologies from them510 model plotted on the exac
same scale as in~a!, showing the much smoother surfaces. The small ins
show the morphologies at 104 and 106 ML in appropriately expanded scale
so that the detailed rough morphology can be seen.
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defined asW(L,t)[^(h2^h&)2&1/2, with the angular brack-
ets representing the average over the substrate of widthL ~in
the one-dimensionalx direction! as well as a noise ensemble
average. The dynamic scaling ansatz~which is obeyed ex-
tremely well by our results for all values of the noise reduc
tion factor m51 –15 we investigated! asserts thatW(L,t)
;tb for j!L andW(L,t→`)[Ws(L);La in the saturated
steady state forj@L, where the lateral correlation lengthj
[j(t);t1/z. The growth~roughness! exponent~s! b(a) and
the dynamical exponentz5a/b ~which describes the ap-
proach to the steady state associated with the growth of la
eral correlations! completely define the universality class of
the growth model, provided the growth problem is self-
affine. In Fig. 2 we show our calculatedW(t) and Ws(L)
dynamic scaling plots for various values of the noise reduc
tion factor. While all the results show excellent dynamic
scaling, it is clear that the critical exponents for the noise
reduced model areb'0.33,a'1.0,z'3, whereas the origi-
nal model (m51) givesb'0.37,a'1.4, z'3.9, in agree-
ment with earlier findings@1,4,7–11#. We believe that the
critical exponentsb'0.33, a'1.0, z'3 are the correct
asymptotic exponents defining the universality class of th

s
FIG. 2. Interface widthW(t) as a function of deposition time. Solid

lines indicate the power-law fit with the growth exponentb for systemL
51000 with ~a! m51 and ~b! m510. Inset: plots of log10Ws vs log10L,
whereWs is the saturation width. Slopes yield the roughness exponenta.
Right-hand inset in~a!: W(t) for WV model withm 5 1, 5, and 15 from top
to bottom. In the original model (m51) b'0.36, whereas in the noise-
reduced (m 5 5, 15! resultsb'0.26.
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one-dimensional growth model originally introduced in R
@1#, and that the noise reduction scheme successfully s
presses the correction to scaling that dominates them51
version of the model for many decades in time.

The coarse-grained continuum equation which is belie
@7–11# to describe the growth model of Ref.@1# is the con-
served nonlinear MBE growth equation@13#:

]h

]t
52n4

]4h

]x4
1l4

]2

]x2S ]h

]xD 2

1 (
n53

`

l2n

]2

]x2S ]h

]xD 2n

1h,

~1!

where h[h(x,t) is now the height fluctuationh2^h&
around the average surface height, andh(x,t) is the~white!
shot noise associated with the deposition beam fluctuat
that produce the kinetic surface roughening. The critical
ponents for the corresponding fourth-orderlinear equation
@1,20#, where l45l2n50, are trivially known to beb
50.375,a51.5, z54. It was already noted in Ref.@1# that
the simulated growth exponents of the discrete model s
to be following those of the linear version of Eq.~1! al-
though no particular significance was attached to this f
The intriguing aspect of the critical behavior of the discre
model ind5111 dimensions has been its consistency w
the linear version of Eq.~1! as far as theglobal exponentsb
(.0.375),a (.1.5), andz (.4) go, whereas at the sam
time the up-down symmetry of the growth problem, which
manifestly present in the linear equation becauseh→2h
leaves the equation invariant, is broken with the evolv
growth morphology, explicitly showing a finite skewnesss
5^h3&^h2&23/2.20.5 ~obviously s[0 for the linear equa-
tion!. Thus the puzzle until our current work has been t
the one-dimensional discrete growth model shouldnot be-
long to the fourth-order conserved linear growth equat
universality, except that it does for as long as~at least up to
eight decades in time! one can dynamically simulate th
model @1–12#. Our multiple-hit noise reduction scheme r
solves the mystery by obtaining the asymptotic exponents
successfully eliminating the problem of severe correction
scaling, which hinders them51 version@1# of the model.
This is similar to what was earlier found in the Eden mod
@17,18#.

The critical exponents we obtain in the noise-reduc
model (b.0.33,a.1.0, z.3) are consistent with the one
loop dynamical RG@13# treatment (b51/3,a51, z53) and
direct numerical simulations@11,21# of the fourth-order non-
linear conserved MBEgrowth equation@13# with l2n50,
but n4 ,l4Þ0 in Eq. ~1!. The original thinking@13#, that
these one-loop results may in fact be exact for the fou
order nonlinear equation, has recently been questioned@22#
with a two-loop dynamical renormalization group~RG! treat-
ment obtaining miniscule~less than 0.5%) numerical correc
tions. These two-loop corrections are too small to be of a
practical significance in our work~or to other simulations
and experiments!. We therefore conclude that the critical e
ponents of the noise-reduced version of the growth mo
introduced in Ref.@1# are the same as those of Eq.~1! with
l2n[0 for n>3, and therefore the model belongs to t
universality class of the nonlinear fourth-order conserv
MBE growth equation.
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We believe that the success of noise reduction in prod
ing the correct asymptotic growth universality arises fro
the suppression of the infinite series of nonlinear term (l2n
Þ0) in Eq. ~1! which are associated with the high steps
the original (m51) discrete growth model@1#. The role of
the infinite series of nonlinear terms~i.e., l2nÞ0 for n
53,4, . . . ) in Eq.~1! is quite subtle@10,11# because the ex
istence of such an infinite series ofrelevantterms is unusual
in critical phenomena. High steps, however, imply large v
ues of the slope]h/]x, indicating the existence of the infinit
series. Simple power counting shows all the terms in t
infinite series to bemarginally relevant operatorsin the one-
dimensional growth problem, and since they are all allow
by the symmetry of the discrete model, they should all
present@7,11# in the growth model of Ref.@1#. Note that the
corresponding linear problem hasa (51.5).1, implying
that the infinite nonlinear series should be generated if
lowed by symmetry. This infinite series has recently be
shown@10,11# to be responsible for giving rise to the anom
lous ‘‘intermittent’’ multiscaling behavior in the growth
model of Ref.@1#, which has attracted considerable attenti
@6–11#. In Fig. 3 we show that the noise reduction techniq
essentially eliminates the anomalous multiscaling beha
in the height correlation functions of the growth model
Ref. @1#. Thus the noise reduction technique resolves
three of the intriguing and puzzling features of the on
dimensional minimal MBE growth model of Ref.@1#,

FIG. 3. ~a! Anomalous multiscaling behavior of the height correlatio
functions Gq(r ,t)5^uh(x1r ,t)2h(x,t)uq&1/q at fixed t5106 ML and the
nearest-neighbor height difference correlation functionsGq(1,t)5^uh(x
11,t)2h(x,t)uq&1/q ~inset! with q51 – 4 from bottom to top. Substrate siz
L51000 andm51. ~b! The same plots for the system withm510. The
noise-reduced correlation functions show only very weak anomalous m
scaling behavior.
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namely,~1! it establishes beyond any reasonable doubt
correct universality class of the model to be the ‘‘expecte
fourth-order conserved nonlinear continuum growth eq
tion; ~2! it suppresses the ‘‘unphysical’’ feature of high ste
and deep grooves in the growth morphology while mainta
ing a finite skewness in the morphology;~3! it suppresses the
anomalous multiscaling in the model.

Before concluding, we emphasize an important feature
our growth model characterized by what isabsentfrom Eq.
~1!—the well-known @9,23,24# Laplacian n2(]2h)/(]x2)
term associated with the generic Edwards-Wilkinson~EW!
universality class is strictly absent from the growth equat
describing the discrete growth model of Ref.@1#. The model
of Ref. @1# is, in fact, the only known limited-mobility MBE
growth modelthat does not belong to the generic EW grow
universality class. It is worth emphasizing this point becaus
this has been a controversial and contentious@2,3,9,25# issue
in the past.

To reinforce this point we have also carried out no
reduction simulations of the closely related Wolf-Villa
~WV! model @20#, which differs from the model of Ref.@1#
only in that all deposited atoms,independent of their initial
coordinations, are allowed to move to lateral neares
neighbor sites in order tomaximizetheir local coordination
number. Although it is well-accepted@9,25# that the WV
model asymptotically belongs to the EW universality cla
this crossover has never been clearly observed in simulat
because for all practical purposes the dynamic scaling be
ior of the WV model@20# is similar to that of the model o
Ref. @1# up to the longest simulation times. Ourd5111
noise-reduced WV model simulations, shown as an inse
Fig. 2~a!, clearly show that the asymptotic growth expone
b decreases from;0.36 ~for m51) to ;0.26.bEW in d
5111 ~for m515) under the noise reduction techniqu
Thus the WV model belongs to the EW universality and
model of Ref.@1# belongs to the fourth-order nonlinear MB
growth universality.

The nonexistence of the EW term@which, if it existed,
would have defined the universality class of the model
cause all of the fourth-order terms in Eq.~1! are irrelevant
compared with the EW Laplacian term# in the growth model
of Ref. @1# is, in fact, an exact result due to a hidden sy
e
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metry @9# in the growth model that produces an exactly va
ishing surface current@25# in the model on a tilted substrate
The surface current on a tilted substrate is, in general, p
portional@9,25# to the strengthn2 of the generic EW term in
the growth equation, and therefore its vanishing impliesn2

[0. Our calculated inclination-dependent surface current
a tilted substrate in the growth model is essentially z
within error bars for all values of the noise reduction fac
(m 5 1–15!. This is also a strong indication that noise r
duction does not change the universality class of our gro
model. This is similar to what was found earlier@17,18# in
the Eden model. It may be worthwhile to point out that in t
Eden model also@17,18# the success of noise reduction
eliminating corrections to scaling arises from the suppress
of high steps.

We conclude by discussing why understanding the u
versality class of the growth model introduced in Ref.@1# is
of considerable interest. An important theoretical reason
that this model is theonly limited-mobility MBE growth
model that does not belong to the generic EW universa
class and therefore, as an exception, its proper theore
understanding is of obvious interest. The fact that t
growth model exhibits complex and highly nontrivial anom
lous multiaffine dynamic scaling@6–11# is an additional the-
oretical incentive in understanding its growth universali
Another significant feature is that, by construction, th
growth model is the low-temperature version@1,4# of the full
temperature-dependent activated diffusion MBE grow
model @4,8# because in the limited-mobility model only th
adatoms without any lateral bonding are allowed to incre
their coordination through diffusion and therefore it has co
siderable experimental significance. It may be appropriat
this context to point out that several experimental measu
ments@26# of MBE growth exponents (b'0.2, a'0.7) are
consistent with the (d5211 dimensional! critical exponents
given by the fourth-order nonlinear conserved growth eq
tion which, as we show in this paper and in Ref.@12#, defines
the universality class of the limited-mobility discrete grow
model of Ref.@1#.
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